6.2 Vector Space and Inner Product Space in \mathbb{R}^n

In linear algebra, an inner product space is a vector space¹⁴ with an additional structure called an inner product.

Definition 6.15. When we have a list of vectors, we use **superscripts** in parentheses as indices of vectors. **Subscripts** represent element indices inside individual vectors.

Example 6.16. Here is a list of four vectors:

$$\mathbf{v}^{(1)} = \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \mathbf{v}^{(2)} = \begin{pmatrix} 1\\-1\\0 \end{pmatrix}, \mathbf{v}^{(3)} = \begin{pmatrix} 1\\1\\-1 \end{pmatrix}, \text{ and } \mathbf{v}^{(4)} = \begin{pmatrix} -1\\-1\\-1 \end{pmatrix}$$

For the second vector, we have $v_1^{(2)} = 1$, $v_2^{(2)} = -1$, and $v_3^{(2)} = 0$.

Definition 6.17. The **inner product** of two real-valued *n*-dimensional (column) vectors \mathbf{u} and \mathbf{v} is defined as

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{v}^T \mathbf{u} = \sum_{k=1}^n u_k v_k.$$

In elementary linear algebra class, you may encounter this quantity in the form of the **dot product** between two vectors.

Definition 6.18. Two vectors **u** and **v** are **orthogonal** if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

More generally, a set of N vectors $\mathbf{v}^{(k)}$, $1 \leq k \leq N$, are **orthogonal** if $\langle \mathbf{v}^{(i)}, \mathbf{v}^{(j)} \rangle = 0$ for all $1 \leq i, j \leq N$, and $i \neq j$.

Definition 6.19. The **norm** of a vector \mathbf{v} is denoted by $\|\mathbf{v}\|$ and is defined as

$$\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$$

which in the n-dimensional Euclidean space is simply the **length** of the vector.

Definition 6.20. A collection of vectors is said to be **orthonormal** if the vectors are orthogonal <u>and</u> each vector has a unit norm.

¹⁴Recall that a vector space is a mathematical structure formed by a collection of elements called vectors, which may be added together and multiplied ("scaled") by numbers, called scalars in this context.

6.21. Given two vectors \mathbf{u} and \mathbf{v} , we can **decompose** \mathbf{v} into a sum of two vectors, one a multiple of \mathbf{u} and the other orthogonal to \mathbf{u} .

(a) $\operatorname{proj}_{\mathbf{u}}(\mathbf{v}) = \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\langle \mathbf{u}, \mathbf{u} \rangle} \mathbf{u}$ is the orthogonal projection of \mathbf{v} onto \mathbf{u} .

(b) $\mathbf{v} - \operatorname{proj}_{\mathbf{u}}(\mathbf{v})$ is the component of \mathbf{v} orthogonal to \mathbf{u} .

Example 6.22. Let $\mathbf{v} = \begin{pmatrix} 5 \\ 5 \end{pmatrix}$ and $\mathbf{u} = \begin{pmatrix} 0 \\ 4 \end{pmatrix}$.

6.23. Suppose **e** is a unit vector; that is $\|\mathbf{e}\| = 1$.

$$\operatorname{proj}_{\mathbf{e}}(\mathbf{v}) =$$

6.24. Any vector in a vector space may also be represented as a linear combination of orthogonal unit vectors or an **orthonormal basis** $\{\mathbf{e}^{(i)}, 1 \leq i \leq N\}$ (for that vector space), i.e.,

$$\mathbf{v} = \sum_{i=1}^{N} \operatorname{proj}_{\mathbf{e}^{(i)}}(\mathbf{v}) = \sum_{i=1}^{N} c_i \mathbf{e}^{(i)}$$

where, by definition, a unit vector has length unity and c_i is the projection of the vector **v** onto the unit vector $\mathbf{e}^{(i)}$, i.e.,

$$c_i = \left\langle \mathbf{v}, \mathbf{e}^{(i)} \right\rangle.$$

Example 6.25. In many applications, the standard choice for the orthonormal basis of a collection of (all possible real-valued) *n*-dimensional vectors is

$$\mathbf{e}^{(1)} = \begin{pmatrix} 1\\0\\0\\\vdots\\0 \end{pmatrix}, \mathbf{e}^{(2)} = \begin{pmatrix} 0\\1\\0\\\vdots\\0 \end{pmatrix}, \dots, \mathbf{e}^{(n)} = \begin{pmatrix} 0\\0\\0\\\vdots\\1 \end{pmatrix}$$

6.26. Suppose we start with a collection of M n-dimensional vectors. Do these M vectors really need to be represented in n dimensions?

Example 6.27. Figure 15a shows a particular collection of 10 vectors in 3-D. When viewed from appropriate angle (as in Figure 15b), we can see that they all reside on a 2-D plane. We only need a two-vector (orthonormal) basis. All ten vectors can be represented as linear combinations of these two vectors.

Figure 15: Ten vectors on a plane

Example 6.28. Consider the four vectors below:

$$\mathbf{v}^{(1)} = \begin{pmatrix} -2\\ -6\\ 2 \end{pmatrix}, \mathbf{v}^{(2)} = \begin{pmatrix} -1\\ -3\\ 1 \end{pmatrix}, \mathbf{v}^{(3)} = \begin{pmatrix} 1\\ 3\\ -1 \end{pmatrix}, \text{ and } \mathbf{v}^{(4)} = \begin{pmatrix} 2\\ 6\\ -2 \end{pmatrix}.$$

They are all multiples of one another.

6.29. Similar idea applies to waveforms. In PAM, we have M waveforms that are simply multiples of a pulse p(t). Therefore, one may represent them as points in one dimension as we had discussed in the previous subsection.

6.30. Gram-Schmidt Orthogonalization Procedure (GSOP) for constructing a collection of orthonormal vectors from a set of *n*-dimensional vectors $\mathbf{v}^{(i)}$, $1 \le i \le M$.

(a) Arbitrarily select a (nonzero) vector from the set, say, $\mathbf{v}^{(1)}$. Let $\mathbf{u}^{(1)} = \mathbf{v}^{(1)}$. Normalize its length to obtain the first vector: $\mathbf{e}^{(1)} = \frac{\mathbf{u}^{(1)}}{\|\mathbf{u}^{(1)}\|}$.

(b) Select an unselected vector from the set, say, $\mathbf{v}^{(2)}$. Subtract the projection of $\mathbf{v}^{(2)}$ onto $\mathbf{u}^{(1)}$:

$$\mathbf{u}^{(2)} = \mathbf{v}^{(2)} - \operatorname{proj}_{\mathbf{u}^{(1)}} \left(\mathbf{v}^{(2)} \right) = \mathbf{v}^{(2)} - \frac{\left\langle \mathbf{v}^{(2)}, \mathbf{u}^{(1)} \right\rangle}{\left\langle \mathbf{u}^{(1)}, \mathbf{u}^{(1)} \right\rangle} \mathbf{u}^{(1)}$$
$$= \mathbf{v}^{(2)} - \left\langle \mathbf{v}^{(2)}, \mathbf{e}^{(1)} \right\rangle \mathbf{e}^{(1)}.$$

Then, we normalize the vector $\mathbf{u}^{(2)}$ to unit length: $\mathbf{e}^{(2)} = \frac{\mathbf{u}^{(2)}}{\|\mathbf{u}^{(2)}\|}$.

(c) Continue by selecting an unselected vector from the set, say, $\mathbf{v}^{(3)}$

and subtract the projections of $\mathbf{v}^{(3)}$ into $\mathbf{u}^{(1)}$ and $\mathbf{u}^{(2)}$:

$$\mathbf{u}^{(3)} = \mathbf{v}^{(3)} - \operatorname{proj}_{\mathbf{u}^{(1)}} \left(\mathbf{v}^{(3)} \right) - \operatorname{proj}_{\mathbf{u}^{(2)}} \left(\mathbf{v}^{(3)} \right)$$
$$= \mathbf{v}^{(3)} - \frac{\langle \mathbf{v}^{(3)}, \mathbf{u}^{(1)} \rangle}{\langle \mathbf{u}^{(1)}, \mathbf{u}^{(1)} \rangle} \mathbf{u}^{(1)} - \frac{\langle \mathbf{v}^{(3)}, \mathbf{u}^{(2)} \rangle}{\langle \mathbf{u}^{(2)}, \mathbf{u}^{(2)} \rangle} \mathbf{u}^{(2)}$$
$$= \mathbf{v}^{(3)} - \left\langle \mathbf{v}^{(3)}, \mathbf{e}^{(1)} \right\rangle \mathbf{e}^{(1)} - \left\langle \mathbf{v}^{(3)}, \mathbf{e}^{(2)} \right\rangle \mathbf{e}^{(2)}.$$

Then, we normalize the vector $\mathbf{u}^{(3)}$ to unit length: $\mathbf{e}^{(3)} = \frac{\mathbf{u}^{(3)}}{\|\mathbf{u}^{(3)}\|}$.

- (d) Continue this procedure for each of the remaining unselected vectors.
- 6.31. What do we get from GSOP?
- (a) A collection of N orthogonal vectors $\mathbf{u}^{(1)}, \mathbf{u}^{(2)}, \ldots, \mathbf{u}^{(N)}$ where

$$N \le \min(M, n).$$

- (i) We discard the zero $\mathbf{u}^{(k)}$ in the collection.
- (ii) The $\mathbf{u}^{(k)}$ are re-indexed to replace the skipped values.

This is then normalized to be a collection of N orthonormal vectors $\mathbf{e}^{(1)}, \mathbf{e}^{(2)}, \ldots, \mathbf{e}^{(N)}$.

(b) The collection $\mathbf{e}^{(1)}, \mathbf{e}^{(2)}, \dots, \mathbf{e}^{(N)}$ forms an orthonormal basis for the span of $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \dots, \mathbf{v}^{(M)}$.

Similarly, the collection $\mathbf{u}^{(1)}, \mathbf{u}^{(2)}, \ldots, \mathbf{u}^{(N)}$ forms an orthogonal basis for the span of $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \ldots, \mathbf{v}^{(M)}$.

(c) We can express $\mathbf{v}^{(j)}$ as

$$\mathbf{v}^{(j)} = \sum_{i=1}^{N} \operatorname{proj}_{\mathbf{e}^{(i)}}(\mathbf{v}^{(j)}) = \sum_{i=1}^{N} c_{i,j} \mathbf{e}^{(i)}$$

where $c_{i,j} = \langle \mathbf{v}^{(j)}, \mathbf{e}^{(i)} \rangle$. Then, the vector $\mathbf{c}^{(j)} = (c_{1,j}, c_{2,j}, \dots, c_{N,j})^T$ gives the new coordinates of $\mathbf{v}^{(j)}$ based on the orthonormal basis from GSOP.

Example 6.32. Consider a collection of two vectors:

$$\mathbf{v}^{(1)} = \begin{pmatrix} 5\\5 \end{pmatrix}$$
 and $\mathbf{v}^{(2)} = \begin{pmatrix} 0\\4 \end{pmatrix}$.

- In their original (default) coordinate systems, the basis contains two vectors $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
- After applying the GSOP, we have two orthonormal vectors

$$\mathbf{e}^{(1)} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 and $\mathbf{e}^{(2)} = \frac{1}{2\sqrt{2}} \begin{pmatrix} -2 \\ 2 \end{pmatrix}$.

• Using $e^{(1)}$ and $e^{(2)}$ as the new basis, we can express $v^{(1)}$ and $v^{(2)}$ in the new coordinate system as

$$\mathbf{c}^{(1)} = \begin{pmatrix} 5\sqrt{2} \\ 0 \end{pmatrix}$$
 and $\mathbf{e}^{(2)} = \begin{pmatrix} 2\sqrt{2} \\ 2\sqrt{2} \end{pmatrix}$

6.33. Important properties: the transformation from v⁽¹⁾, v⁽²⁾, ..., v^(M) to c⁽¹⁾, c⁽²⁾, ..., c^(M) preserve many geometric quantities.
(a) Same inner product.

(b) Same norm.

(c) Same distance.