6.2 Vector Space and Inner Product Space in \mathbb{R}^{n}

In linear algebra, an inner product space is a vector space ${ }^{[14]}$ with an additional structure called an inner product.

Definition 6.15. When we have a list of vectors, we use superscripts in parentheses as indices of vectors. Subscripts represent element indices inside individual vectors.

Example 6.16. Here is a list of four vectors:

$$
\mathbf{v}^{(1)}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \mathbf{v}^{(2)}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right), \mathbf{v}^{(3)}=\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right), \text { and } \mathbf{v}^{(4)}=\left(\begin{array}{c}
-1 \\
-1 \\
-1
\end{array}\right) .
$$

For the second vector, we have $v_{1}^{(2)}=1, v_{2}^{(2)}=-1$, and $v_{3}^{(2)}=0$.
Definition 6.17. The inner product of two real-valued n-dimensional (column) vectors \mathbf{u} and \mathbf{v} is defined as

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{v}^{T} \mathbf{u}=\sum_{k=1}^{n} u_{k} v_{k}
$$

In elementary linear algebra class, you may encounter this quantity in the form of the dot product between two vectors.

Definition 6.18. Two vectors \mathbf{u} and \mathbf{v} are orthogonal if $\langle\mathbf{u}, \mathbf{v}\rangle=0$.
More generally, a set of N vectors $\mathbf{v}^{(k)}, 1 \leq k \leq N$, are orthogonal if $\left\langle\mathbf{v}^{(i)}, \mathbf{v}^{(j)}\right\rangle=0$ for all $1 \leq i, j \leq N$, and $i \neq j$.
Definition 6.19. The norm of a vector \mathbf{v} is denoted by $\|\mathbf{v}\|$ and is defined as

$$
\|\mathbf{v}\|=\sqrt{\langle\mathbf{v}, \mathbf{v}\rangle}
$$

which in the n-dimensional Euclidean space is simply the length of the vector.

Definition 6.20. A collection of vectors is said to be orthonormal if the vectors are orthogonal and each vector has a unit norm.

[^0]6.21. Given two vectors \mathbf{u} and \mathbf{v}, we can decompose \mathbf{v} into a sum of two vectors, one a multiple of \mathbf{u} and the other orthogonal to \mathbf{u}.
(a) $\operatorname{proj}_{\mathbf{u}}(\mathbf{v})=\frac{\langle\mathbf{v}, \mathbf{u}\rangle}{\langle\mathbf{u}, \mathbf{u}\rangle} \mathbf{u}$ is the orthogonal projection of \mathbf{v} onto \mathbf{u}.
(b) $\mathbf{v}-\operatorname{proj}_{\mathbf{u}}(\mathbf{v})$ is the component of \mathbf{v} orthogonal to \mathbf{u}.

Example 6.22. Let $\mathbf{v}=\binom{5}{5}$ and $\mathbf{u}=\binom{0}{4}$.
6.23. Suppose \mathbf{e} is a unit vector; that is $\|\mathbf{e}\|=1$.

$$
\operatorname{proj}_{\mathbf{e}}(\mathbf{v})=
$$

6.24. Any vector in a vector space may also be represented as a linear combination of orthogonal unit vectors or an orthonormal basis $\left\{\mathbf{e}^{(i)}, 1 \leq i \leq N\right\}$ (for that vector space), i.e.,

$$
\mathbf{v}=\sum_{i=1}^{N} \operatorname{proj}_{\mathbf{e}^{(i)}}(\mathbf{v})=\sum_{i=1}^{N} c_{i} \mathbf{e}^{(i)}
$$

where, by definition, a unit vector has length unity and c_{i} is the projection of the vector \mathbf{v} onto the unit vector $\mathbf{e}^{(i)}$, i.e.,

$$
c_{i}=\left\langle\mathbf{v}, \mathbf{e}^{(i)}\right\rangle .
$$

Example 6.25. In many applications, the standard choice for the orthonormal basis of a collection of (all possible real-valued) n-dimensional vectors is

$$
\mathbf{e}^{(1)}=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right), \mathbf{e}^{(2)}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right), \ldots, \mathbf{e}^{(n)}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
1
\end{array}\right) .
$$

6.26. Suppose we start with a collection of $M n$-dimensional vectors. Do these M vectors really need to be represented in n dimensions?

Example 6.27. Figure 15a shows a particular collection of 10 vectors in 3D. When viewed from appropriate angle (as in Figure 15b), we can see that they all reside on a 2-D plane. We only need a two-vector (orthonormal) basis. All ten vectors can be represented as linear combinations of these two vectors.

Figure 15: Ten vectors on a plane

Example 6.28. Consider the four vectors below:

$$
\mathbf{v}^{(1)}=\left(\begin{array}{c}
-2 \\
-6 \\
2
\end{array}\right), \mathbf{v}^{(2)}=\left(\begin{array}{c}
-1 \\
-3 \\
1
\end{array}\right), \mathbf{v}^{(3)}=\left(\begin{array}{c}
1 \\
3 \\
-1
\end{array}\right), \text { and } \mathbf{v}^{(4)}=\left(\begin{array}{c}
2 \\
6 \\
-2
\end{array}\right)
$$

They are all multiples of one another.
6.29. Similar idea applies to waveforms. In PAM, we have M waveforms that are simply multiples of a pulse $p(t)$. Therefore, one may represent them as points in one dimension as we had discussed in the previous subsection.
6.30. Gram-Schmidt Orthogonalization Procedure (GSOP) for constructing a collection of orthonormal vectors from a set of n-dimensional vectors $\mathbf{v}^{(i)}, 1 \leq i \leq M$.
(a) Arbitrarily select a (nonzero) vector from the set, say, $\mathbf{v}^{(1)}$.

Let $\mathbf{u}^{(1)}=\mathbf{v}^{(1)}$.
Normalize its length to obtain the first vector: $\mathbf{e}^{(1)}=\frac{\mathbf{u}^{(1)}}{\left\|\mathbf{u}^{(1)}\right\|}$.

(b) Select an unselected vector from the set, say, $\mathbf{v}^{(2)}$.

Subtract the projection of $\mathbf{v}^{(2)}$ onto $\mathbf{u}^{(1)}$:

$$
\begin{aligned}
\mathbf{u}^{(2)} & =\mathbf{v}^{(2)}-\operatorname{proj}_{\mathbf{u}^{(1)}}\left(\mathbf{v}^{(2)}\right)=\mathbf{v}^{(2)}-\frac{\left\langle\mathbf{v}^{(2)}, \mathbf{u}^{(1)}\right\rangle}{\left\langle\mathbf{u}^{(1)}, \mathbf{u}^{(1)}\right\rangle} \mathbf{u}^{(1)} \\
& =\mathbf{v}^{(2)}-\left\langle\mathbf{v}^{(2)}, \mathbf{e}^{(1)}\right\rangle \mathbf{e}^{(1)} .
\end{aligned}
$$

Then, we normalize the vector $\mathbf{u}^{(2)}$ to unit length: $\mathbf{e}^{(2)}=\frac{\mathbf{u}^{(2)}}{\left\|\mathbf{u}^{(2)}\right\|}$.

(c) Continue by selecting an unselected vector from the set, say, $\mathbf{v}^{(3)}$
and subtract the projections of $\mathbf{v}^{(3)}$ into $\mathbf{u}^{(1)}$ and $\mathbf{u}^{(2)}$:

$$
\begin{aligned}
\mathbf{u}^{(3)} & =\mathbf{v}^{(3)}-\operatorname{proj}_{\mathbf{u}^{(1)}}\left(\mathbf{v}^{(3)}\right)-\operatorname{proj}_{\mathbf{u}^{(2)}}\left(\mathbf{v}^{(3)}\right) \\
& =\mathbf{v}^{(3)}-\frac{\left\langle\mathbf{v}^{(3)}, \mathbf{u}^{(1)}\right\rangle}{\left\langle\mathbf{u}^{(1)}, \mathbf{u}^{(1)}\right\rangle} \mathbf{u}^{(1)}-\frac{\left\langle\mathbf{v}^{(3)}, \mathbf{u}^{(2)}\right\rangle}{\left\langle\mathbf{u}^{(2)}, \mathbf{u}^{(2)}\right\rangle} \mathbf{u}^{(2)} \\
& =\mathbf{v}^{(3)}-\left\langle\mathbf{v}^{(3)}, \mathbf{e}^{(1)}\right\rangle \mathbf{e}^{(1)}-\left\langle\mathbf{v}^{(3)}, \mathbf{e}^{(2)}\right\rangle \mathbf{e}^{(2)} .
\end{aligned}
$$

Then, we normalize the vector $\mathbf{u}^{(3)}$ to unit length: $\mathbf{e}^{(3)}=\frac{\mathbf{u}^{(3)}}{\left\|\mathbf{u}^{(3)}\right\|}$.

(d) Continue this procedure for each of the remaining unselected vectors.
6.31. What do we get from GSOP?
(a) A collection of N orthogonal vectors $\mathbf{u}^{(1)}, \mathbf{u}^{(2)}, \ldots, \mathbf{u}^{(N)}$ where

$$
N \leq \min (M, n)
$$

(i) We discard the zero $\mathbf{u}^{(k)}$ in the collection.
(ii) The $\mathbf{u}^{(k)}$ are re-indexed to replace the skipped values.

This is then normalized to be a collection of N orthonormal vectors $\mathbf{e}^{(1)}, \mathbf{e}^{(2)}, \ldots, \mathbf{e}^{(N)}$.

(b) The collection $\mathbf{e}^{(1)}, \mathbf{e}^{(2)}, \ldots, \mathbf{e}^{(N)}$ forms an orthonormal basis for the span of $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \ldots, \mathbf{v}^{(M)}$.
Similarly, the collection $\mathbf{u}^{(1)}, \mathbf{u}^{(2)}, \ldots, \mathbf{u}^{(N)}$ forms an orthogonal basis for the span of $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \ldots, \mathbf{v}^{(M)}$.
(c) We can express $\mathbf{v}^{(j)}$ as

$$
\mathbf{v}^{(j)}=\sum_{i=1}^{N} \operatorname{proj}_{\mathbf{e}^{(i)}}\left(\mathbf{v}^{(j)}\right)=\sum_{i=1}^{N} c_{i, j} \mathbf{e}^{(i)}
$$

where $c_{i, j}=\left\langle\mathbf{v}^{(j)}, \mathbf{e}^{(i)}\right\rangle$. Then, the vector $\mathbf{c}^{(j)}=\left(c_{1, j}, c_{2, j}, \ldots, c_{N, j}\right)^{T}$ gives the new coordinates of $\mathbf{v}^{(j)}$ based on the orthonormal basis from GSOP.

Example 6.32. Consider a collection of two vectors:

$$
\mathbf{v}^{(1)}=\binom{5}{5} \text { and } \mathbf{v}^{(2)}=\binom{0}{4} .
$$

- In their original (default) coordinate systems, the basis contains two vectors $\binom{1}{0}$ and $\binom{0}{1}$.
- After applying the GSOP, we have two orthonormal vectors

$$
\mathbf{e}^{(1)}=\frac{1}{\sqrt{2}}\binom{1}{1} \text { and } \mathbf{e}^{(2)}=\frac{1}{2 \sqrt{2}}\binom{-2}{2} .
$$

- Using $\mathbf{e}^{(1)}$ and $\mathbf{e}^{(2)}$ as the new basis, we can express $\mathbf{v}^{(1)}$ and $\mathbf{v}^{(2)}$ in the new coordinate system as

$$
\mathbf{c}^{(1)}=\binom{5 \sqrt{2}}{0} \text { and } \mathbf{e}^{(2)}=\binom{2 \sqrt{2}}{2 \sqrt{2}} .
$$

6.33. Important properties: the transformation from $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \ldots, \mathbf{v}^{(M)}$ to $\mathbf{c}^{(1)}, \mathbf{c}^{(2)}, \ldots, \mathbf{c}^{(M)}$ preserve many geometric quantities.
(a) Same inner product.
(b) Same norm.
(c) Same distance.

[^0]: ${ }^{14}$ Recall that a vector space is a mathematical structure formed by a collection of elements called vectors, which may be added together and multiplied ("scaled") by numbers, called scalars in this context.

