6.2 Vector Space and Inner Product Space in R"

In linear algebra, an inner product space is a vector Spacdﬂ with an addi-
tional structure called an inner product.

Definition 6.15. When we have a list of vectors, we use superscripts
in parentheses as indices of vectors. Subscripts represent element indices
inside individual vectors.

Example 6.16. Here is a list of four vectors:

1 1 1 -1

v = (1|, v®@=[-1],v® =] 1], andv®¥ =] -1

0 0 -1 -1

For the second vector, we have v?) =1, v§2) = —1, and v§2) = 0.

Definition 6.17. The inner product of two real-valued n-dimensional
(column) vectors u and v is defined as

n
(u,v) =viu= Z U V-
k=1

In elementary linear algebra class, you may encounter this quantity in the
form of the dot product between two vectors.

Definition 6.18. Two vectors u and v are orthogonal if (u,v) = 0.
More generally, a set of N vectors v(®, 1 < k < N, are orthogonal if
<V(i),V(j)> =0forall 1 <4,5 <N, andi#j.

Definition 6.19. The norm of a vector v is denoted by ||v|| and is defined
as
vl = Vv, v)

which in the n-dimensional Euclidean space is simply the length of the
vector.

Definition 6.20. A collection of vectors is said to be orthonormal if the
vectors are orthogonal and each vector has a unit norm.

14Recall that a vector space is a mathematical structure formed by a collection of elements called vectors,
which may be added together and multiplied (“scaled”) by numbers, called scalars in this context.
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6.21. Given two vectors u and v, we can decompose v into a sum of two
vectors, one a multiple of u and the other orthogonal to u.

(a) proju(v) = 233§u is the orthogonal projection of v onto u.

(b) v — proju(v) is the component of v orthogonal to u.

Example 6.22. Let v = (g) and u = (2)

6.23. Suppose e is a unit vector; that is ||e|| = 1.

proje(v) =

6.24. Any vector in a vector space may also be represented as a linear com-
bination of orthogonal unit vectors or an orthonormal basis {e(i), 1<:<N }
(for that vector space), i.e.,

VvV = Z prOJe(z)

where, by definition, a unit vector has length unity and ¢; is the projection
of the vector v onto the unit vector e, i.e.,

C, — <V, e(l)> .
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Example 6.25. In many applications, the standard choice for the orthonor-
mal basis of a collection of (all possible real-valued) n-dimensional vectors
1s

(1 0 0)
0 1 0
e =10],e@=[0],....e™M=1]0
\0 0 1)

6.26. Suppose we start with a collection of M n-dimensional vectors. Do
these M vectors really need to be represented in n dimensions?

Example 6.27. Figure shows a particular collection of 10 vectors in 3-
D. When viewed from appropriate angle (as in Figure[L5b), we can see that
they all reside on a 2-D plane. We only need a two-vector (orthonormal)
basis. All ten vectors can be represented as linear combinations of these two
vectors.

L I - L

(2) (b)

Figure 15: Ten vectors on a plane

Example 6.28. Consider the four vectors below:

They are all multiples of one another.
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6.29. Similar idea applies to waveforms. In PAM, we have M waveforms
that are simply multiples of a pulse p(t). Therefore, one may represent them
as points in one dimension as we had discussed in the previous subsection.

6.30. Gram-Schmidt Orthogonalization Procedure (GSOP) for con-
structing a collection of orthonormal vectors from a set of n-dimensional
vectors v, 1 < i< M.

(a) Arbitrarily select a (nonzero) vector from the set, say, v(1),
Let u") = v,

Normalize its length to obtain the first vector: e(! u’)

R

> i) =7

e

(b) Select an unselected vector from the set, say, v(?).
Subtract the projection of v(? onto u'V:

u® = v® _ proj .o (V@)) —v® _

_v® _ <V(2>, e<1>> o)

u®
[Ju ]

Then, we normalize the vector u® to unit length: e® =

7@

ﬁ(z) — 6(2) — pro]ﬁ(l)V(z)

A

e(®

— uV

projgam v

(¢) Continue by selecting an unselected vector from the set, say, v(®)
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and subtract the projections of v(® into u® and u®:

u® = v® — proj ) (V(3)> — Proj ye (V(?’))
_ 3 _ wum _ Mu 2)
(u®, u®) (u® u®)

_ B3 _ <V<3>7 e<1)> o) _ <V(3>’ e<2>> e

Then, we normalize the vector u® to unit length: e® =
S0

u® =v® — (proj.v® + proj;v®)

- .

’
’
’

4
’

projspan{ﬁ(})tﬁ’é)}v(@ =projﬁ(1)\7(3) + pFOjﬁ(z)V(3)

pu®

°y

(d) Continue this procedure for each of the remaining unselected vectors.

6.31. What do we get from GSOP?

(a) A collection of N orthogonal vectors u™, u®, ... u™) where

N < min(M,n).
(i) We discard the zero u'®) in the collection.
(ii) The u® are re-indexed to replace the skipped values.

This is then normalized to be a collection of N orthonormal vectors
e e@ .. e,
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(b) The collection e e® .. e®) forms an orthonormal basis for the
span of v»0, v® . v(M),
Similarly, the collection u™, u®, ..., u™) forms an orthogonal basis
for the span of vV, v(® .. v(M),
(c) We can express vV as
N N
vi) = ZpI‘OJe che
i=1 1=1
where ¢;; = (v, e). Then, the vector ¢ = (¢1;,¢04,...,cn;)7

gives the new coordinates of vU) based on the orthonormal basis from
GSOP.

Example 6.32. Consider a collection of two vectors:

W _ (° @ _ (0
v (5> and v <4> .

e In their original (default) coordinate systems, the basis contains two

vectors <(1)> and <(1)>

e After applying the GSOP, we have two orthonormal vectors

=5 () o= ()

e Using eV and e as the new basis, we can express v( and v(? in the
new coordinate system as

- () i - (22)
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G0 = 3 = (g)

o)
e
6(2)—axis
6.33. Important properties: the transformation from v, v, .. v
to c(l), 0(2), , cM) preserve many geometric quantities.

(a) Same inner product.
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(b) Same norm.

(c¢) Same distance.
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